If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-100x+100=0
a = 9; b = -100; c = +100;
Δ = b2-4ac
Δ = -1002-4·9·100
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-80}{2*9}=\frac{20}{18} =1+1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+80}{2*9}=\frac{180}{18} =10 $
| 8-s=4 | | -18=6y+8(y+3) | | -3=n-3 | | -2+m/5=-4 | | -3x-7=1-4x | | 5(5x+6)+3(3x+5)+2=34x+47 | | 0=2y+500 | | 2{x-3(x-2}=1 | | r-15=-25 | | 3n+18+5n+26=180 | | 3-i=2 | | .50x+.45(30)=22.5 | | 12=2x-2=8 | | 23k+17=4(7k-3)-5k | | -1=x-19 | | 5,5-15=6,5-3,5x | | .50x+0.45(30)=22.5 | | y2+5y-3=0 | | -8+a/1=-8 | | 9x-15=3x+21 | | 8/x+2=3/x-1 | | x+7=-x+15 | | n/15=-9 | | 40x2=126.75 | | a+15=-14 | | 7x+7=2x | | 3x-6-2x-14=2x+15 | | 4x+16=x+10 | | 4/5a=-2 | | 5d–3)+2d=4d+9 | | W+4/2w=-5/6 | | 3x−15=5x−23 |